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• Traffic-related air pollution increases in-
flammation, with both represented by
many markers.

• Structural equation models use multiple
metrics to better elucidate associations.

• We assessed associations of air pollution
and socioeconomic status with inflamma-
tion.

• IL-6, CRP and TNFRII in blood were used
in a latent construct of inflammation.

• Association was larger for latent inflam-
mation construct than individual bio-
markers.
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Background: Evidence suggests that exposure to traffic-related air pollution (TRAP) and social stressors can increase in-

flammation. Given that there are many different markers of TRAP exposure, socio-economic status (SES), and inflam-
mation, analytical approaches can leverage multiple markers to better elucidate associations. In this study, we applied
structural equation modeling (SEM) to assess the association between a TRAP construct and a SES construct with an
inflammation construct.
Methods: This analysis was conducted as part of the Community Assessment of Freeway Exposure and Health (CAFEH; N
=408) study. Air pollutionwas characterized using a spatiotemporalmodel of particle number concentration (PNC) com-
bined with individual participant time-activity adjustment (TAA). TAA-PNC and proximity to highways were considered
for a construct of TRAP exposure. Participant demographics on education and income for an SES construct were assessed
via questionnaires. Blood samples were analyzed for high sensitivity C-reactive protein (hsCRP), interleukin-6 (IL-6), and
tumor necrosis factor-α receptor II (TNFRII), which were considered for the construct for inflammation. We conducted
SEM and compared our findings with those obtained using generalized linear models (GLM).
Results: Using GLM, TAA-PNC was associated with multiple inflammation biomarkers. An IQR (10,000 particles/cm3) in-
crease of TAA-PNC was associated with a 14 % increase in hsCRP in the GLM. Using SEM, the association between the
TRAP construct and the inflammation construct was twice as large as the associations with any individual inflammation
ructural equation modeling; UFP, ultrafine particles; PNC, particle number concentration; TAA, time-activity adjusted; CRP, C-reactive
eceptor II; SES, socioeconomic status; CAFEH, The Community Assessment of Freeway Exposure andHealth; CBPR, community-based
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biomarker. SES had an inverse association with inflammation in all models. Using SEM to estimate the indirect effects of
SES on inflammation through the TRAP construct strengthened confidence in the association of TRAPwith inflammation.
Conclusion: Our TRAP construct resulted in stronger associations with a combined construct for inflammation than with
individual biomarkers, reinforcing the value of statistical approaches that combine multiple, related exposures or out-
comes. Our findings are consistent with inflammatory risk from TRAP exposure.
1. Introduction

Extensive evidence indicates that living near highways and major road-
ways and corresponding exposure to traffic-related air pollution (TRAP) are
associated with adverse health outcomes (HEI, 2010; HEI, 2022). Ultrafine
particles (UFP, <100 nm in aerodynamic diameter), a component of TRAP,
are elevated near traffic corridors, and there is increasing evidence that ex-
posure to UFP contributes to these health risks (Berklein et al., 2021;
Brugge et al., 2018; Downward et al., 2018; Ostro et al., 2015; Ohlwein
et al., 2019; SAB, 2018; Weichenthal et al., 2017; HEI, 2022). That said,
there remains substantial uncertainty regarding UFP-related health effects
and the extent to which UFP serves as a surrogate for other TRAP constitu-
ents. This is principally because of the spatiotemporal variability of UFP
concentrations and the associated problem of exposure error.

Better elucidating the health effects of TRAP and the contribution from
UFP requires reductions in exposure error and improvements in character-
ization of outcomes. Exposure error likely biases associations toward the
null inmany studies. Multiple strategies have been used to improve UFP ex-
posure assignment (Apte et al., 2017; Breen et al., 2014; Minet et al., 2018;
Simon et al., 2018), including leveraging information on the microenviron-
ments where people spend time throughout the day. For example, in our
study showing associations of individually assigned UFP exposures with
biomarkers of inflammation, we found that adjustment for time activity
in addition to incorporation of body mass index (BMI) and race/ethnicity
led to more interpretable exposure-response curves (Lane et al., 2015;
Lane et al., 2016). However, ambient UFP is only one marker of TRAP,
and few studies have simultaneously considered incorporation of multiple
covariates reflective of TRAP exposure and multiple covariates reflective
of inflammation, which could provide more robust insight than analyses
of individual covariates while avoiding issues of multiple comparison.

Here we reanalyze data from the Community Assessment of Freeway
Exposure and Health (CAFEH) study, a cross-sectional study evaluating as-
sociations between TRAP and multiple inflammation biomarkers, using
structural equationmodeling (SEM). SEM is a combination of path analysis,
factor analysis, and linear regression that allows for evaluation of both di-
rect and indirect effects of variables (path analysis) and development of la-
tent constructs of correlated variables (factor analysis) (Tomarken and
Waller, 2005). Thus, SEMallows simultaneously consideringmultiple path-
ways by which risk factors might be associated with measures of health. In
this context, SEM allows us to test whether or not related variables, in this
case multiple markers of TRAP exposure and inflammation, load onto
(i.e., are sufficiently correlated within factor analysis) latent constructs. If
an inflammatory biomarker construct results in stronger associations than
individual biomarkers, or if a TRAP construct results in stronger associa-
tions than individual pollutants such as UFP, it would further support our
hypothesis that TRAP is associated with inflammation.

2. Methods

2.1. Study design and population data

The CAFEH study is community-based participatory research (CBPR)
and has been described in detail previously (Fuller et al., 2013b; Lane
et al., 2013; Lane et al., 2015; Patton et al., 2014a; Patton et al., 2015).
Briefly, the study is a cross-sectional design in which we recruited partici-
pants from three sets of geographic areas paired to include demographically
similar populations living in near-highway and urban-background (>1 km
from highways) neighborhoods over the course of one year each per paired
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areas. We stratified recruitment by distance to a major highway (Interstate-
93) in and near Boston, MA to maximize exposure contrast to UFP; strata
were 0–100 m, 100–400 m, and > 1 km. All participant recruitment and
health outcomemeasurementswere conducted in September 2009 through
July 2013.

Random samples were drawn by enumerating all addresses in the study
areas, and were supplemented with smaller convenience samples to meet
enrollment targets. We recruited participants at their homes where they
signed informed consent forms. Consented participants were then adminis-
tered a questionnaire that collected basic demographics (including age, sex,
race or ethnicity), information on potential confounders (including income,
education, smoking, occupation), and hourly time activity for two recent
days, which has been shown to be predictive of longer-term time activity
(Panis, 2010). The protocol was approved by the Tufts University IRB.

Participants who completed the in-home survey were invited to attend
field clinics at which biological data were collected. Blood samples were
drawn and analyzed for high sensitivity C-reactive protein (hsCRP),
interleukin-6 (IL-6), and tumor necrosis factor alpha receptor II (TNFRII)
using research and clinical grade laboratory assays (described elsewhere)
(Fuller et al., 2013b). BMI was calculated from height and weight as mea-
sured using research-grade instruments.

Highly resolved geocoding was conducted at the parcel level with
orthophoto correction for single and multi-family homes, while residential
unit correction was conducted for participants in large public housing
facilities (Lane et al., 2013). Euclidean distance from nearest highway
was calculated for each participant's geocoded residential position using
the Massachusetts Department of Transportation road network layer
(Lane et al., 2013). The Euclidean distance measure was used in the SEM
models.

2.2. Exposure assessment

Here we present in brief a summary of the PNC monitoring, modeling
and exposure assignment, with more details provided in Supplemental
Text 1 and elsewhere (e.g., Padró-Martínez et al., 2012; Patton et al.,
2015; Lane et al., 2015).

In the same years as recruitment, we collected air pollution data with
the Tufts Air Pollution Monitoring Laboratory (TAPL-1), a modified recrea-
tional vehicle outfitted withmultiple air monitoring instruments, including
a condensation particle counter (Model 3775, TSI, Shoreview, MN) that
measures UFP as particle number concentration (PNC, 4–3000 nm).
TAPL-1 was equipped with a Garmin GPS V and driven on fixed routes in
the study areas. Routes were designed to collect data near homes of all par-
ticipants and driving times were scheduled to include all days of the week,
hours including early morning through late evening, and all seasons. Data
for times when self-sampling of TAPL-1 exhaust was likely (i.e., when
TAPL-1 was stopped or moving slowly downwind relative to wind speed)
were removedduring quality control. The resulting data sets showed higher
PNC near the highway and major roadways as well as higher PNC during
colder weather, as expected (Padró-Martínez et al., 2012; Patton et al.,
2014b).

Land use data and hourly traffic andmeteorologywere used as variables
to build hourly predictive regression models of PNC measured for each
study area. Model building led to four models of natural log transformed
PNC: two models for the pairs of near-highway and urban-background
neighborhoods that were monitored on the same days and one each for a
near-highway and an urban background neighborhood that were more dis-
tant from each other and therefore monitored on different days. Variables



Table 1
Population characteristics (n = 408).

Characteristic n % or mean ± SD

Age (years, mean ± SD) 408 61 ± 13
BMI (kg/m2, mean ± SD) 408 27.4 ± 6.8
Underweight (<18.5) 14 3 %
Normal weight (18.5–24.9) 168 41 %
Overweight (25–29.9) 117 29 %
Obese (30+) 109 27 %

City/neighborhood
Near highway (≤500 m)

Somerville 100 24 %
Dorchester/South Boston 90 22 %
Chinatown 133 32 %

Urban background (≥1000 m)
Somerville 25 6 %
Dorchester/South Boston 20 5 %
Malden 40 10 %

Sex
Female 238 58 %
Male 170 42 %

Smoking
Current 83 20 %
Former 126 31 %
Never 199 49 %

Educational attainment
<High school diploma 136 34 %
High school diploma 123 30 %
Undergraduate 99 24 %
Graduate school 50 12 %

Race/ethnicity
White non-Hispanic 173 42 %
East Asian 162 40 %
Other 73 18 %
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used in the regression models included highway side (east or west), dis-
tance to highway, distance to nearest major road, wind speed and direction,
temperature, day of week, and highway traffic volume and speed. Models
included different sets of variables based on their predictive value. We
found that neighborhood-specific models performed better in the individ-
ual neighborhoods than a more general modeling approach (Patton et al.,
2015).

Hourly individualized exposure of each participant was assigned based
on modeled ambient PNC levels after adjustment for where study partici-
pants typically spent each hour of the day (time-activity adjusted PNC,
hereafter TAA-PNC). Modeled ambient PNC at the residence (a majority
of participant time) was used for time indoors and outdoors at home be-
cause pairedmeasurementsmade at a subset of the homes showed effective
infiltration of UFP (Fuller et al., 2013a). Time spent at work was assigned
the mean of modeled concentrations at all near-highway participant resi-
dences for high traffic exhaust exposure jobs and urban background levels
for low traffic exhaust exposure jobs. Time on highways was assigned
modeled values at the edge of the highway. Exposures during time spent
in other locations were assigned as urban background levels because this
is the most common exposure in the metropolitan area (Lane et al.,
2016). Annual average TAA-PNC values were used for the epidemiological
analyses reported in this paper.

2.3. Statistical analysis

As the values for hsCRP, IL-6 and TNFRII were not normally distributed,
we log-transformed them for all analyses, after which point they approxi-
mated a normal distribution. We used generalized linear models (GLMs)
to test the independent association of log-transformed hsCRP, IL-6 and
TNFRII (hereafter referred to as hsCRP, IL-6 and TNFRII) with TAA-PNC.
GLMs were adjusted for age (years), gender (female, male), BMI (kg/m2),
smoking status (current, former, never), and race or ethnicity (detailed
below). These variables are all known to be cardiovascular disease risk fac-
tors and/or predictors of some of our biomarkers of interest (Lane et al.,
2016). The study participants (N = 408) included a large non-Hispanic
White population and a large Chinese and Vietnamese population, with
more limited numbers for other racial/ethnic groups. Therefore, we
grouped race/ethnicity into non-Hispanic White, East Asian (Chinese and
Vietnamese), and other (African American, Haitian Creole, Hispanic, La-
tino, Indian, Pakistani and Native American).

To develop our SEM, we included the adjustment covariates listed
above to facilitate comparison with the GLMs. Beyond these covariates,
we limited the dataset to significant independent predictors of one or
more biomarkers of inflammation and used a Pearson's test for correlation
as well as associations observed in previous analyses (Lane et al., 2015;
Lane et al., 2016) to identify predictors for the latent constructs for TRAP,
socioeconomic status (SES), and inflammation.We then examined the asso-
ciation between latent TRAP, SES, and inflammation using a SEM. SEMs
consist of two stages: a measurement model, which shows the relationships
between latent constructs of TRAP, SES, and inflammation and their predic-
tors; and a structural model, which we used to examine the association be-
tween each latent construct.

We examined the sensitivity of our findings to the potential role of SES
by developing twomodels, both of which were adjusted for the same covar-
iates. In one model, we allowed SES alone to contribute directly to inflam-
mation. In the second model, we allowed SES to contribute directly to
inflammation and indirectly through the TRAP construct. We then com-
pared the associations and model fit.

Effect-size estimates were reported for an inter-quartile range (IQR)
increase in TRAP or TAA-PNC. Model fit was compared using the Akaike
information criterion (AIC) and root mean square error (RMSE). All sta-
tistical analyses were performed using SAS (Statistical Analysis
Software, Cary, North Carolina) version 9.3.2. SEM was conducted
using Proc Calis to determine path loadings, p-values between latent
variables, and the individual variables contributing to the latent
variables.
3

3. Results

The majority of the study population was female, above the age of 60
years, overweight or obese, and current or former smokers (Table 1).
Non-Hispanic White and East Asian participants constituted 42 % and 40
% of the population, respectively. East Asians were heavily concentrated
in the paired near highway and urban areas where participants were re-
cruited in the final year of recruitment. We previously reported that being
older or a current or former smoker was associated with higher levels of
all inflammation biomarkers (Lane et al., 2016). BMI (in kg/m2), when di-
vided into underweight (≤18.5), normal (18.6–24.9), overweight
(25–29.9) and obese (≥30) categories, had a non-monotonic relationship
with each biomarker of inflammation, with lower levels for normal weight
than for underweight or overweight/obese participants. East Asian partici-
pants had lower median levels of all biomarkers than non-Hispanic White
participants and the other race or ethnicity category (Corlin et al., 2014).
Of note, all underweight participantswere East Asianwhile all obese partic-
ipants were non-Asian. Gender was associated with a minor difference for
IL-6, but not for hsCRP and TNFRII.

In our SEM, the inflammation construct was explained by hsCRP, IL-6
and TNFRII with each pair of variables having a Pearson's correlation
above 0.4 (Supplemental Table 1). Income and education had a Pearson's
correlation of 0.46 and were used to predict the SES construct. The latent
construct TRAP was predicted by TAA-PNC and distance to highway as a
proxy for exposure to other air pollutants, such as NO2 and black carbon
that are also elevated near highways (Karner et al., 2010).

Table 2 presents the associations from the two SEMs of the TRAP and
SES constructs on the inflammation construct adjusted for age, gender,
BMI, smoking status, and race/ethnicity. SEM 1 was designed to examine
the independent effects of TRAP and SES on inflammation. SEM 2 allowed
SES to directly contribute to inflammation and indirectly contribute
through the TRAP pathway. Fig. 1 compares the two SEMs graphically.

Both SEMs resulted in positive associations of the latent construct for
TRAP as well as TAA-PNC with the inflammation construct composed of
hsCRP, IL-6 and TNFRII. Adjustment for BMI had the largest effect on



Table 2
SEM outputs for the independent and joint effects between TRAP, SES and inflammation.

Model Latent construct
& predictors (1)

Partial
R2

Variance
(p-val)

Latent construct
& predictors (2)

Partial
R2

Variance
(p-val)

Latent construct
& predictors (3)

Partial
R2

Variance
(p-val)

SEM 1 TRAP 0.27 (0.07) SES −0.64
(<0.01)

Inflammation

TAA-PNC 0.223 0.31 (0.11) Education 0.51 0.27 (<0.01) hsCRP 0.67 0.76 (<0.01)
Distance to
highway

0.19 0.16 (0.08) Income 0.38 0.30 (<0.01) IL-6 0.59 0.68 (0.02)

TNFRII 0.41 0.55 (0.02)
SEM 2 TRAP 0.33 (0.03) SES −0.72

(<0.01)
Inflammation

TAA-PNC 0.25 0.34 (0.06) Education 0.52 0.64 (<0.01) hsCRP 0.71 0.82 (<0.01)
Distance to
Highway

0.21 0.26 (0.09) Income 0.47 0.52 (<0.01) IL-6 0.67 0.78 (<0.01)

TNFRII 0.52 0.61 (<0.01)

Fig. 1. Structural equation models of the independent (top SEM 1) and joint (bottom SEM 2) associations of TRAP and SES with inflammation.
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Table 3
Comparison of the association between an IQR increase (10,000 particle/cm3) in
time-activity adjusted particle number concentration (TAA-PNC) and LN hsCRP or
the inflammation latent construct using three models: 1) GLM, 2) SEM with TRAP
independent of SES (SEM 1), and 3) SEM with linked pathways between SES and
TRAP (SEM 2).

Model Measure hsCRP Inflammation

GLM β 14.0 % NA
AIC 405.4 NA
RMSE 1.04 NA
R2 0.12 NA

SEM 1 β 28.2 % 29 %
AIC 45.7 176
RMSE 0.14 0.16
R2 0.24 0.19

SEM 2 β 34.1 % 29 %
AIC 26.2 139
RMSE 0.13 0.11
R2 0.27 0.32

All models adjusted for age, gender, BMI, smoking status and race.
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these associations, followed by smoking status. Age, gender and education
had marginal effects on the associations, but were retained in adjusted
models because they are known cardiovascular disease risk factors. Addi-
tional adjustment by race/ethnicity increased the TAA-PNC β-estimates
and strength of association for hsCRP, IL-6 and TNFRII.

The association between the TRAP construct and inflammation was
greater, and the overall model fit slightly improved with the comparative
fit index increasing from 0.91 to 0.93, when SES contributed to inflamma-
tion through the TRAP construct (Fig. 1, bottom). However, including SES
as a mediation step resulted in a minimal increase in the effect of TAA-PNC
on the inflammation construct. We tested another model (results not
shown) that included a smoking construct consisting of both individual
and environmental tobacco smoke (ETS, from exposures in the residence
and workplace). However, the smoking variables were not independent
predictors of hsCRP, IL-6 and TNFRII, nor was the construct found tomean-
ingfully contribute to inflammation in our SEM.

Table 3 compares the association between TAA-PNC and hsCRP using a
GLM that includes the same predictors as the SEM models as covariates.
Also shownare both of the SEMmodels with hsCRP as the outcome variable
which allows for comparisons of association and model fit. An IQR [10,000
particles/cm3] increase in TAA-PNCwas associatedwith a 14% increase in
hsCRP in the GLM, an association that more than doubled in both of the
SEMs. Overall model fit was substantially improved in the SEMs compared
to the GLM, with decreases in both AIC and RMSE.

4. Discussion

Using SEMs, we found that a latent construct for inflammation, which
incorporated concentrations of three blood biomarkers (IL-6, CRP and
TNFRII), had a moderate and positive association with a latent construct
for TRAP that included time-activity adjusted PNC (UFP) exposures. Fur-
ther, the latent construct for inflammation was strongly inversely associ-
ated with SES, and inclusion of a pathway between SES and TRAP
strengthened the association between TRAP and inflammation. This sug-
gests that TRAP, based primarily on UFP exposure, in conjunction with in-
dividual attributes associated with SES, could have combined effects on
inflammation.

Critically, using SEM, we found associations that were approximately
double those estimated through identically-structured GLM, reinforcing
the value of modeling approaches that account for the complex relation-
ships among covariates and leverage insights from multiple related expo-
sure and outcome variables. These findings thus strengthen our
confidence in associations between TRAP/UFP and inflammation.

Our construct for inflammation that uses three bloodmarkers of inflam-
mation likely not only reflects a more robust statistical approach, but is
5

consistent with biologically plausible pathways. It is established that
“inflammasomes” drive concentrations of IL-1 family cytokines and some
gasdermins. IL-1, in turn, drives downstream inflammation biomarkers
such as CRP and IL-6. It makes sense that a construct like ours which com-
bines inflammation biomarkers would better capture inflammation derived
from upstream activation than would individual biomarkers.

The NLRP3 inflammasome (nucleotide-binding oligomerization
domain-like receptor [NLR] family pyrin domain-containing 3) is of partic-
ular interest for two reasons: 1) Among the 21 human inflammasomes only
NLRP3 integrates inflammatory responses; and 2) NLRP3 is known to be ac-
tivated by many types of particles, both endogenous and exogenous. UFP,
which can cross biological barriers, such as cell membranes, are a prime
candidate for being an additional activator of this inflammasome. There
is a need for further research to investigate the early stages of activation
of this pathway directly.

The primary limitation of our analysis is that the CAFEH study was
cross-sectional, which limits causal interpretation. However, we note that
the associations we observed strengthened and became more monotonic
when we reduced exposure error through gold standard geocoding,
correcting for time activity of study participants and adjusting for con-
founders (Lane et al., 2015; Lane et al., 2016). Here we reported additional
strengthening of associations when we combined the inflammation bio-
markers as well as multiple TRAP covariates into single constructs in SEM
models. These findings are all consistent with reducing exposure and out-
come error, which otherwise tend to bias results toward the null.

An additional limitation is that there was likely residual exposure mis-
classification because our ambientmodels and time activity adjustments ex-
plain some, but not all exposure variation assigned to study participants.
We also did not assess the role of respiratory rate, which would also affect
personal exposure (Corlin et al., 2018). Finally, we did not model or assess
exposure to air pollutants other than UFP that are elevated near highways
(Patton et al., 2014b). We did include distance to highway as a surrogate
for other pollutants that are elevated next to highways and that may be pat-
terned differentially fromUFP. However, multiple near-highway pollutants
should be modeled and assigned explicit exposures in future epidemiology
studies.

Our study suggests several lines of future research. First, there is a need
for epidemiological studies that directly assess the association between
TRAP exposure, ideally including high-resolution estimates of UFP and
other pollutants with consideration of activity patterns, and activation of
inflammasomes. Second, some of the challenges of high-resolution
exposure assessment still need to be addressed. Our current approach of
developing finely resolved models of PNC as an indicator of UFP (20 m ×
20 m) with personal time-activity adjustments may not be viable for all
studies due to the substantial resources required to build high resolution
ambient models of PNC and to collect personal data from all study
participants.

Finally, given the importance of SES gradients nearmajor roadways, the
role of SES in TRAP and UFP epidemiology requires further attention.
Broadly, we recommend the use of SEM in settings with exposures that
may have multi-directional contributions and outcomes that can be used
tomeasure different aspects of physiological pathways thatmay not be test-
able in a one-way causal model.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.161874.
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